Forecasting New Student Candidates Using the Random Forest Method
نویسندگان
چکیده
منابع مشابه
Forest-RK: A New Random Forest Induction Method
In this paper we present our work on the parametrization of Random Forests (RF), and more particularly on the number K of features randomly selected at each node during the tree induction process. It has been shown that this hyperparameter can play a significant role on performance. However, the choice of the value of K is usually made either by a greedy search that tests every possible value t...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest
The prediction accuracy of short-term load forecast (STLF) depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF)-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original fe...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملExploring the Utility of the Random Forest Method for Forecasting Ozone Pollution in SYDNEY
This paper explores the utility of an ensemble decision-tree method called random forest, in comparison with the classic classification and regression trees (CART) algorithm, for forecasting ground-level ozone pollution in the Sydney metropolitan region. Statistical forecasting models are developed to provide daily ozone forecasts in November-March for three subregions, i.e., Sydney east, Sydne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lontar Komputer : Jurnal Ilmiah Teknologi Informasi
سال: 2020
ISSN: 2541-5832,2088-1541
DOI: 10.24843/lkjiti.2020.v11.i01.p05